Endogenous and exogenous Na-K-Cl cotransporter expression in a low K-resistant mutant MDCK cell line.
نویسندگان
چکیده
A low K-resistant mutant Madin-Darby canine kidney (MDCK) cell line, LK-C1, has been shown previously to lack functional Na-K-Cl cotransporter (NKCC) activity, indicating that it may be a useful NKCC "knockout" cell line for structure-function studies. Using immunological probes, we first characterized the defect in the endogenous NKCC protein of the LK-C1 cells and then fully restored NKCC activity in these cells by stably expressing the human secretory NKCC1 protein (hNKCC1). The endogenous NKCC protein of the LK-C1 cells was expressed at significantly lower levels than in wild-type MDCK cells and was not properly glycosylated. This latter finding indicated that the lack of functional NKCC activity in the LK-C1 cells may be due to the inability to process the protein to the plasma membrane. In contrast, exogenously expressed hNKCC1 protein was properly processed and fully functional at the plasma membrane. Significantly, the exogenous hNKCC1 protein was regulated in a manner similar to the protein in native secretory cells as it was robustly activated by cell shrinkage, calyculin A, and low-Cl incubation. Furthermore, when the LK-C1 cells formed an epithelium on permeable supports, the exogenous hNKCC1 protein was properly polarized and functional at the basolateral membrane. The low levels of endogenous NKCC protein expression, the absence of any endogenous NKCC transport activity, and the ability to form a polarized epithelium indicate that the LK-C1 cells offer an excellent expression system with which to study the molecular physiology of the cation Cl cotransporters.
منابع مشابه
Purinergic-induced signaling in C11-MDCK cells inhibits the secretory Na-K-Cl cotransporter.
Purinergic inhibition of Na-K-Cl cotransport has been noted in various renal epithelial cells derived from the collecting tubule, including Madin-Darby canine kidney (MDCK) cells. In recent studies, we have observed purinergic inhibition of Na-K-Cl cotransport in C11-MDCK subclones (alpha-intercalated-like cells). Interestingly, Na-K-Cl cotransport activity was also detected in C7-MDCK subclone...
متن کاملFunctional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl cotransporter in HEK-293 cells.
We have studied the regulation of the K-Cl cotransporter KCC1 and its functional interaction with the Na-K-Cl cotransporter. K-Cl cotransporter activity was substantially activated in HEK-293 cells overexpressing KCC1 (KCC1-HEK) by hypotonic cell swelling, 50 mM external K, and pretreatment with N-ethylmaleimide (NEM). Bumetanide inhibited 86Rb efflux in KCC1-HEK cells after cell swelling [inhi...
متن کاملFlow-induced expression of endothelial Na-K-Cl cotransport: dependence on K(+) and Cl(-) channels.
Steady laminar shear stress has been shown previously to markedly increase Na-K-Cl cotransporter mRNA and protein in human umbilical vein endothelial cells and also to rapidly increase endothelial K(+) and Cl(-) channel conductances. The present study was done to evaluate the effects of shear stress on Na-K-Cl cotransporter activity and protein expression in bovine aortic endothelial cells (BAE...
متن کاملA Cation-Chloride Cotransporter Gene Is Required for Cell Elongation and Osmoregulation in Rice.
Rice (Oryza sativa) is characterized by having fibrous root systems; however, the molecular mechanisms underlying the root development are not fully understood. Here, we isolated a rice mutant with short roots and found that the mutant had a decreased cell size of the roots and shoots compared with wild-type rice. Map-based cloning combined with whole-genome sequencing revealed that a single nu...
متن کاملActivation of liver X receptors reduces CFTR-mediated Cl(-) transport in kidney collecting duct cells.
Liver X receptors (LXRs) are transcription factors belonging to the nuclear receptor super family, which act as regulators of lipid and glucose metabolism. However, LXRs have been shown to regulate the function of transporters in the kidney, including the Na-Pi cotransporter, organic anion transporter, and epithelial Na(+) channel. In this report, we demonstrated the ability of LXR ligands, bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 280 6 شماره
صفحات -
تاریخ انتشار 2001